

Лнст актуализацин

рабочей программы дисциплнны «Фнзнко-хнмические методы анализа объектов агросферы» н фонда оценочных средств по дисциплине

на 2017/2018 vчебный год

для подготовки кадров высшей квалификации по направлению подготовки 35.06 .01 «Сельское хозяйство» направленность программы «Агрохимия», «Мелиорация, рекультивация и охрана земель»

Рабочая программа дисциплины «Физико-химическне методы анализа объектов агросферы» и фонд оценочных средств не претерпели изменений, пересмотрены и одобрены на заседании кафедры хнмни протокол от 28 августа 2017 г. № 1

Заведующий кафедрой
 И.И. Дмитревская

СОГЛАСОВАНО:

Председатель учебно-методической комиссии факультета почвоведения, агрохимии и экологии, к.х.н., доцент Бочкарев А.B. протокол заседания УМК от 28 августа 2017 г. № 7а

Начальник учебно-методического отдела подготовки кадров высшей квалификации УПК ВК

C.A. Дикарева

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ МСХА имени К.А. ТИМИРЯЗЕВА»
(ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Факультет почвоведения, агрохимии и экологии
Кафедра физической и органической химии

УТВЕРЖДАЮ:
Проректор по инновационному развитию
Д.В. Козлов 2014 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

«ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ОБЪЕКТОВ АГРОСФЕРЫ»

для подготовки кадров высшей квалификации ФГОС ВО

Направление подготовки: 35.06 .01 Сельское хозяйство
Направленность программ: Мелиорация, рекультивация и охрана земель, Агрохимия

Год обучения 1
Семестр обучения 2
Язык преподавания _русский

Автор рабочей программы:
Белопухов Сергей Леонидович, к.х.н., д.с.-Х.Н., професссор

(10) 1D 2014 г.

Рабочая программа предназначена для преподавания дисциплины Блока 1 «Дисциплины (модули)» «Физико-химические методы анализа объектов агросферы» аспирантам очной формы обучения.
Программа составлена в соответствии с требованиями ФГОС ВО (уровень подготовки кадров высшей квалификации) по направлению подготовки 35.06.01 Сельское хозяйство, утвержденного приказом Министерства образования и науки Российской Федерации от 30.07.2014 г. № 871 и зарегистрированного в Минюсте России 20.08.2014 г. №33686.

Программа обсуждена на заседании кафедры физической и органической химии протокол от «CO» \qquad 2014 г. № \qquad
Зав. кафедрой Белопухов С.Л., к.х.н., д.с.-х.н., профессор
《10》 \qquad 2014 г.

Рецензент \qquad

Проверено:

Начальник Управления подготовки кадров высшей квалификации
 О.В. Якимец

Начальник учебно-методического отдела Управления подготовки кадров высшей квалификации
 С.А. Дикарева

Corласовано:

Декан факультета ночвоведения. агрохимии и экологии, д.б.н, профессор Наумов В.Д.

《13» 102014 г.

Программа обсуждена на заседании Ученого совета факультета почвоведения, агрохимии и эконогии протокол от "13" 10 \qquad 2014 г. № $46 / 10$

Секретарь ученого совета факультета Когут J.B., ассистент

"13"
\qquad 2014 г.

Программа иринята учебно-методической комиссией факультета почвоведения, агрохимии и экологии протокол от «13» 10 2014 г. № 23

Председатель учебно-методичсской комиссии Бочкарев А.В., к.х.н., доцеит

Заведуюший кафедрой
Белопухов С..Ј., к.....ו., о.с.-х.и., профессор

$$
《 10 » \quad 10 \quad 2014 \mathrm{r} .
$$

$$
\text { "13" } 10 \quad 2014 \mathrm{r}
$$

Начальник УИТ

Отдел комплектования Ц ЦЬ

М.Ю. Годов
Е.A. Комарова

Кония электронного варианта нолучена:
Начальник отдсла подлержки дистаннионного обучения УИТ

К.И. Ханжиян

Содержание

АННОТАЦИЯ 5

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ (МОДУЛЯ) 6
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП. 6
3. ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ (МОДУЛЯ) 7
4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ 8
5. ВХОДНЫЕ ТРЕБОВАНИЯ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ), ПРЕДВАРИТЕЛЬНЫЕ УСЛОВИЯ 10
6. ФОРМАТ ОБУЧЕНИЯ 10
7. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), ВИДЫ УЧЕБНЫХ ЗАНЯТИЙ И ФОРМ ИХ ПРОВЕДЕНИЯ. 10
7.1 Распределение трудоёмкости дисциплины (модуля)по видам работ. 10
7.2 Содержание дисциплины (модуля) 11
7.3 Образовательные технологии 15
7.4 Перечень вопросов для самостоятельного изучения дисциплины (модуля) 16
7.5 Контрольные работы /рефераты 18
8. ФОРМА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ И ФОНД ОЦЕНОЧНЫХ СРЕДСТВ 21
9. РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ 24
9.1 Перечень основной литературы 24
9.2 Перечень дополнительной литературы 25
9.3 Перечень ресурсов информационно-телекоммуникационной сети «Интернет» 25
9.4 Перечень информационных технологий, используемых при осуществлении образовательного процесса 26
9.5 Описание материально-технической базы 26
9.5.1 Требования к аудиториям 26
9.5.2 Требования к специализированному оборудованию 27
10. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ АСПИРАНТАМ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ) 28
11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРЕПОДАВАТЕЛЯМ ПО ОРГАНИЗАЦИИ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) 28

Abstract

АННОТАЦИЯ Учебная дисциплина (модуль) «Физико-химические методы анализа объектов агросферы» является важной составной частью Учебного плана подготовки аспирантов по направлению подготовки 35.06.01 Сельское хозяйство, направленность программ: Мелиорация, рекультивация и охрана земель, Агрохимия.

Основная задача учебной дисциплины (модуля) - освоение аспирантами теоретических и практических знаний в области физической химии. Дисциплина (модуль) «Физико-химические методы анализа объектов агросферы» в системе химических наук изучает различные физикохимические методы для определения компонентов в анализируемых объектах, методики измерений, пробоподготовки, в соответствии с особенностями анализируемых объектов.

Аспиранты получают знания, применение которых на практике позволяет оценивать целесообразность и эффективность использования соответствующих методов и методик измерений, для использования в контроле качества продукции растениеводства и животноводства, продуктов питания, объектов окружающей среды, применять полученные теоретические знания при проведении научно-исследовательской работы, исследованиях в других смежных отраслях наук.

Общая трудоемкость учебной дисциплины (модуля) «Физикохимические методы анализа объектов агросферы» составляет 3 зачетных ед., в объеме 108 часов.

Контроль знаний аспирантов проводится в форме текущей и промежуточной аттестации.

Текущая аттестация аспирантов - оценка знаний и умений проводится постоянно на практических занятиях с помощью тестовых заданий и контрольных работ, оценки самостоятельной работы аспирантов. Промежуточная аттестация аспирантов проводится в форме итогового контроля по дисциплине - зачета.

Ведущие преподаватели: профессор Белопухов С.Л., доцент Немировская И.Б., профессор Дмитриев Л.Б.

1. Цель и задачи дисциплины

Целью изучения дисциплины Б1.В.ОД.2 «Физико-химические методы анализа объектов агросферы» является формирование у аспирантов углубленных профессиональных знаний по современным физикохимическим методам анализа, ознакомление с особенностями объектов анализа и задачами при их анализе; современными методами, применяемыми для анализа различных реальных объектов агросферы; заложить фундаментальные знания о принципах, закономерностях, областях применения методов, научить подходам к выбору наиболее эффективных методов определения компонентов анализируемых образцов в соответствии с поставленной задачей, грамотному квалифицированному применению выбранных методов и методик на практике.

Задачи дисциплины (модуля) «Физико-химические методы анализа объектов агросферы»:

- сформировать у аспирантов представление о современных физикохимических методах анализа, применимости метода для анализа различных по природе, агрегатному состоянию и составу объектов агросферы; научить применять на практике различные методы пробоотбора и пробоподготовки материалов различной природы.
- о ведущих тенденциях и современных представлениях о путях развития аналитического оборудования и оборудования для пробоподготовки,
- об основных научных проблемах при применении физико-химических методов анализа объектов агросферы,
- подготовить аспирантов к применению полученных знаний при исследовании объектов агросферы с применением физико-химических методов анализа, обработке и интерпретации полученных результатов.

В курсе дисциплины (модуля) «Физико-химические методы анализа объектов агросферы» особое внимание уделено приобретению аспирантами практических навыков квалифицированно использовать различные методы для определения компонентов анализируемых объектов в соответствии с поставленной задачей и особенностями анализируемых объектов; оценивать целесообразность и эффективность их использования, применением приобретенных знаний для использования в контроле качества продукции растениеводства и животноводства, продуктов питания, объектов окружающей среды.
2. Место дисциплины (модуля) в структуре основной профессиональной образовательной программы высшего образования - программы подготовки научно-педагогических кадров в аспирантуре (далее программа аспирантуры).

Дисциплина (модуль) Б1.В.ОД. 2 «Физико-химические методы анализа объектов агросферы» включена в перечень ФГОС ВО (уровень подготовки кадров высшей квалификации), в Блок 1 «Дисциплины (модули)»

вариативной части. Реализация в дисциплине (модуле) «Физико-химические методы анализа объектов агросферы» требований ФГОС ВО (уровень подготовки кадров высшей квалификации), ОПОП ВО и Учебного плана подготовки аспирантов по программе аспирантуры, решений учебнометодической комиссии и Ученого совета факультета, отечественного и зарубежного опыта, должна учитывать следующее знание научных разделов: приборы и оборудование для проведения физико-химических исследований, методы и способы пробоподготовки, обработка результатов измерений, методики проведения измерений.

Предшествующими курсами, на которых непосредственно базируется дисциплина (модуль) «Физико-химические методы анализа объектов агросферы» являются дисциплины неорганическая химия, аналитическая химия, физическая и коллоидная химия, органическая химия.

Особенностью учебной дисциплины (модуля) «Физико-химические методы анализа объектов агросферы» является ее направленность на реализацию аспирантами полученных знаний в научно-исследовательской, практической деятельности, формировании современного мировоззрения о процессах, постоянно и периодически происходящих в объектах агросферы, на основе современных знаний и законов физической химии, понимании возможностей и механизмов влияния (управления) на процессы (реакции), протекающие в агросфере.

Аспиранты получат знания по физико-химическим методам анализа, основанным на новейших достижениях современного естествознания (ядерно-физические методы, нейтронно-, гамма-активационный анализ, рентгенофлуоресцентный, инфракрасной спектроскопии, рентгенорадиометрический, атомно-эмиссионной и масс-спектрометрии с индук-тивно-связанной плазмой и др.), области применения различных видов анализа, чувствительности, селективности, пределам обнаружения химических элементов, веществ. При изучении дисциплины также рассматриваются вопросы контроля и испытаний, их отличий друг от друга, особенности испытаний на безопасность, применение средств измерений для оценки значений параметров контролируемой и испытуемой продукции, а также режимов испытаний, обеспечение единства измерений метрологической службой, проверка и калибровка средств измерений, требования к испытательным лабораториям и испытательному оборудованию.
3. Общая трудоемкость дисциплины (модуля) составляет 3 зачетных единиц, 108 часов, из которых 30 часов составляет контактная работа аспиранта с преподавателем (10 часов занятия лекционного типа, 20 часов занятия семинарского типа), 78 часа составляет самостоятельная работа аспиранта.

4. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы аспирантуры

Дисциплина (модуль) должна формировать следующие компетенции:
универсальные компетенции (УК):

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);

общепрофессиональные компетенции (ОПК):

- владение методологией теоретических и экспериментальных исследований в области сельского хозяйства, агрономии, защиты растений, селекции и генетики сельскохозяйственных культур, почвоведения, агрохимии, ландшафтного обустройства территорий, технологий производства сельскохозяйственной продукции (ОПК-1).

Освоение учебной дисциплины (модуля) «Физико-химические методы анализа объектов агросферы» направлено на формирование у аспирантов компетенций, представленных в таблице 1.

Контроль знаний аспирантов проводится в форме текущей и промежуточной аттестации.

Текущая аттестация аспирантов - оценка знаний и умений проводится постоянно на практических занятиях с помощью тестовых заданий и контрольных работ, оценки самостоятельной работы аспирантов.

Промежуточная аттестация аспирантов проводится в форме итогового контроля по дисциплине - зачета.
Таблица 1
Планируемые результаты обучения по дисциплине (модулю) «Физико-химические методы анализа объектов

$\begin{gathered} \text { № } \\ \Pi / \Pi \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Код } \\ \text { компете } \\ \text { нции } \end{array}$	Содержание формируемых компетенций	В результате изучения дисциплины (модуля) обучающиеся должны:		
			знать	уметь	владеть
1	УК-1	способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях	основные понятия и законы физической и коллоидной химии, физико-химические свойства неорганических и органических соединений	воспринимать, обобщать и анализировать информацию, полученную из разных источников, по физико-химическим, электрохимическим процессам, происходящим в агросфере	ставить цель и организовывать её достижение, уметь пояснить свою цель и выбирать пути достижения
2	ОПК-1	владение методологией теоретических и экспериментальных исследований в области сельского хозяйства, агрономии, защиты растений, селекции и генетики сельскохозяйственных культур, почвоведения, агрохимии, ландшафтного обустройства территорий, технологий производства сельскохозяйственной продукции	физико-химические, коллоидно-химические свойства почв, удобрений, воды, других химических веществ, методики расчетов физико-химических параметров	рассчитывать и оценивать физико-химические и коллоидно-химические параметры и характеристики, используя законы химической термодинамики и кинетики, электрохимии, использовать современное программное обеспечение	систематизировать методы решения задач, описывать результаты, формулировать выводы, прогнозировать развитие ситуаций, изменение состояния параметров системы или элементов, результаты эксперимента, используя специальное программное обеспечение

5. Входные требования для освоения дисциплины (модуля), предварительные условия
Курс предполагает наличие у аспирантов знаний и умений по основным законам химии, преподаваемым в магистратуре, в т.ч. по физической и коллоидной, органической химии.

6. Формат обучения

Обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечиваются электронными и (или) печатными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

7. Содержание дисциплины (модуля), виды учебных занятий и формы их проведения.

7.1. Распределение трудоемкости дисциплины (модуля) по видам работ

Общая трудоёмкость дисциплины составляет $\underline{3}$ зач.ед. (108 часов), их распределение по видам работ представлено в таблице 2 .

Таблица 2
Распределение трудоемкости дисциплины по видам работ

Вид учебной работы	Трудоемкость	
	зач. ед.	час.
Общая трудоемкость дисциплины по учебному плану	$\mathbf{3}$	$\mathbf{1 0 8}$
Аудиторные занятия	$\mathbf{0 , 8 3}$	$\mathbf{3 0}$
Лекции (Л)	0,27	10
Практические занятия (ПЗ)		
Семинары (С) $^{\text {Самостоятельная работа (СРА) }}$ (0,56	20
в том числе:	$\mathbf{2 , 1 7}$	$\mathbf{7 8}$
реферат		
самоподготовка к текущему контролю знаний	1,17	42
Вид контроля: зачет	$\mathbf{0 , 2 5}$	$\mathbf{9}$

[^0]
7.2. Содержание дисциплины (модуля)

Таблица 3
Тематический план дисциплины

Наименование разделов и тем дисциплин	Bсего, час.	Контактная работа, час.			Самостоят ельная работа, час.
		$\begin{array}{\|c\|} \hline \text { Лекци } \\ \text { ия } \end{array}$	Практич. занятие	Семинар	
Раздел 1. Химико-аналитический контроль объектов агросферы	56	4		14	38
Тема 1. Пробоотбор и пробоподготовка	8	2		2	4
Тема 2. Физико-химические методы анализа воды	14			4	10
Тема 3. Физико-химические методы анализа воздуха	10			2	8
Тема 4. Анализ почв и донных отложений	12	2		2	8
Тема 5. Анализ продукции сельского хозяйства, продуктов питания, биологических материалов	12			4	8
Раздел 2. Современные физикохимические методы анализа	52	6		6	40
Тема 1. Методы разделения и концентрирования	14	2		2	10
Тема 2. Тест - методы химического анализа	14	2		2	10
Тема 3. Химико-токсикологический контроль	14	2		2	10
Тема 4. Испытательные центры и лаборатории					10
Итого по дисциплине (модулю)	108	10		20	78

Содержание дисциплины (модуля)

Лекционные занятия

Раздел 1. Химико-аналитический контроль объектов агросферы

Тема 1. Пробоотбор и пробоподготовка
Химико-аналитический контроль объектов агросферы. Основные объекты анализа. Роль физико-химических методов анализа в решении проблем окружающей среды. Пробоотбор. Представительная проба, способы ee получения. Транспортировка и хранение проб, способы их консервирования. Пробоподготовка. Разложение проб. Концентрирование и разделение при пробоподготовке.

Тема 2. Физико-химические методы анализа воды

Классификация вод, Пробоотбор и хранение проб воды. Основные аналитические проблемы. Определение обобщенных физических и химических показателей, определяющих качество воды. Определение неорганических компонентов вод. Природные органические вещества вод. Общая оценка содержания органических веществ: определение органического углерода, азота, фосфора. Основные классы загрязняющих органических веществ. Источники поступления токсикантов, устойчивость токсикантов в окружающей среде, токсичность, методы извлечения, концентрирования, разделения и определения.

Тема 3. Физико-химические методы анализа воздуха

Воздух городов. Воздух рабочей зоны, промышленные и транспортные выбросов. Способы и методы отбора проб воздуха. Химический состав воздуха. Определение неорганических компонентов воздуха природного и техногенного происхождения. Определение органических соединений. Аэрозоли: образование в атмосфере, роль в переносе нелетучих загрязняющих веществ, особенности пробоотбора и анализа. Автоматизация анализа воздуха. Основные типы газоанализаторов. Дистанционные методы анализа.

Тема 4. Анализ почів и донных отложений

Особенности физико-химического анализа почвы. Пробоотбор. Химический состав почв. Гумусовые вещества. Определение обобщенных показателей. Определение неорганических компонентов. Элементный и молекулярный анализ. Пробоподготовка. Анализ водной вытяжки. Определение органических компонентов в почве. Определение токсичных веществ. Методы извлечения и концентрирования загрязняющих органических веществ.

Тема 5. Анализ продукции сельского хозяйства, продуктов питания, биологических материалов

Основные аналитические проблемы при анализе биологических объектов. Химические вещества пищи. Методы их извлечения, концентрирования, разделения. Определение компонентов, определяющих пищевую ценность продукта. Оценка безопасности пищевых продуктов. Основные аналитические проблемы. Особенности отбора, хранения и транспортировки биомасс. Анализ

биологических материалов на содержание лекарственных препаратов, токсичных и одурманивающих веществ. Тест-методы.

Раздел 2. Современные физико-химические методы анализа Тема 1. Методы разделения и концентрирования

Маскирование, разделение и концентрирование. Классификация методов разделения и концентрирования. Количественные характеристики этих методов. Принципы сочетания пробоподготовки и методов определения веществ. Проточные и автоматизированные методы анализа, включающие концентрирование. Методы концентрирования, применяемые в комбинированных и гибридных методах определения органических и неорганических веществ. Экстракция. Осаждение и соосаждение. Сорбция. Современные способы проведения концентрирования, приборы и устройства. Особенности сочетания концентрирования с методами определения элементов: спектрофотометрией, атомной-абсорбцией, атомно-эмиссионным методом с индуктивно связанной плазмой, рентгенофлуоресцентным, инверсионной вольтамперометрией и др., а также с газовой и жидкостной хроматографией при определении органических соединений. Приборы для анализа. Выбор метода концентрирования. Оптимизация условий определения веществ. Примеры сорбционно-спектроскопических и сорбционнохроматографических методов определения веществ, в том числе проточных и автоматизированных.

Тема 2. Тест - методы химического анализа

Общая характеристика тест-методов и область применения. Современные направления развития тест-методов. Тест-системы, тест-средства, тестметодики. Классификация тест-систем. Общие представления о методологии скрининга с помощью тест-систем. Химические основы тест-методов. Реакции и реагенты. Основные требования, предъявляемые к реакциям. Способы использования реагентов. Основные типы носителей, используемых для создания тест-систем. Общая характеристика средств для тестирования. Индикаторные бумаги. Индикаторные порошки. Индикаторные трубки. Таблетки и подобные формы. Готовые растворы в капельницах. Пассивные дозиметры. Тест-средства на основе пенополиуретанов. Общая характеристика физико-химических свойств пенополиуретанов. Особенности сорбции элементов и органических соединений на пенополиуретанах. Области применения пенополиуретанов в химическом анализе. Примеры определения неорганических и органических соединений с помощью тест-средств на основе пенополиуретанов. Определение неорганических и органических соединений в различных объектах агросферы.

Тема 3. Химико-токсикологический контроль

Эколого-аналитический контроль токсичных органических соединений. Объекты эколого-аналитического контроля. Нормируемые и ненормируемые органические загрязнители. Источники поступления экотоксикантов в окружающую среду. Основные требования к эколого-аналитическому контролю. Предельно допустимые концентрации (ПДК). Контроль

содержания органических токсикантов: капиллярная газовая хроматография, хромато-масс-спектрометрия, высокоэффективная жидкостная и тонкослойная хроматография, сверхкритическая флюидная хроматография. Сочетание различных видов хроматографии и развитие высокоселективной пробоподготовки для определения нормируемых экотоксикантов. Идентификация соединений. Применение различных видов хроматографии. Анализ смеси без разделения. Регистрация ИК-, ЯМР-спектров и массспектров смеси. Сочетание различных видов хроматографии и массспектрометрии с ионизацией в широком диапазоне давлений в источнике ионов. Установление вероятной структуры на основании масс-спектров, ИКспектров и данных реакционной хроматографии.

Тема 4. Испытательные центры и лаборатории

Цели и задачи аналитической лаборатории. Область деятельности лаборатории. Виды исследования веществ, материалов и их характеристики. Анализ продукции. Понятие сертификации продукции. Анализ объектов, связанных с обеспечением жизнедеятельности человека, и объектов окружающей среды. Нормирование показателей состава веществ и содержания вредных примесей. Нормирование требований к точности измерений. Установление обоснованных норм погрешности. Методики количественного химического анализа. Сферы распространения государственного метрологического контроля и надзора. Аккредитация аналитических лабораторий. Система аккредитации аналитических лабораторий (центров). Система аккредитации испытательных лабораторий ГОСТ Р. Порядок проведения аккредитации. Инспекционный контроль деятельности аккредитованных лабораторий. Показатели качества методик анализа. Формы представления. Способы выражения. Оценка пригодности методик анализа. Контроль качества результатов анализа. Внутрилабораторный оперативный контроль процедуры анализа. Стандартные образцы в системе обеспечения качества работы лаборатории. Применимость стандартных образцов в лабораторной практике.

Таблица 4
Содержание семинарских занятий по дисциплине и контрольных мероприятий

$\begin{gathered} \text { № } \\ \Pi / \Pi \end{gathered}$	Наименование разделов и тем дисциплины (укрупнено)	№ и название семинарских занятий	Вид контрольного мероприятия	Количест во часов
	Раздел 1. «Химико-аналитический контроль объектов агросферы»			14
	Тема 1. Пробоотбор и пробоподготовка	Разложение проб. Концентрирование и разделение при пробоподготовке.	Тестирование	2
	Тема 2. Физикохимические методы анализа воды	Основные классы загрязняющих органических веществ.	Тестирование	4

	Тема 3. Физико- химические методы анализа воздуха	Определение органических соединений.	Тестирование	2
Тема 4. Анализ почв и донных отложений	Определение органических компонентов в почве. Определение токсичных веществ.	Тестирование	2	
	Тема 5. Анализ продукции сельского хозяйства, продуктов питания, биологических материалов Раздел 2. Современные физико-химические методы анализа	мализ биологических материалов на содержание лекарственных препаратов, токсичных и одурманивающих вешесв.	Тестирование	4
	Тема 1. Методы разделения и концентрирования	Экстракция и сорбция	Тестирование	2
	Тема 2. Тест - методы химического анализа	Индикаторные бумаги, порошки, трубки	Тестирование	2
	Тема 3. Химико- токсикологический контроль	Экотоксиканты и их определение	Тестирование	2
Итого по дисциплине		2		

7.3. Обрразовательные технологии

Таблица 5
Активные и интерактивные формы проведения занятий

Общее количество часов аудиторных занятий, проведённых с применением активных и интерактивных образовательных технологий составляет 12 часа (40% от общей аудиторной трудоемкости дисциплины).

7.4. Перечень вопросов для самостоятельного изучения дисциплины (модуля) «Физико-химические методы анализа объектов агросферы»

Таблица 6
Перечень вопросов для самостоятельного изучения дисциплины

$\begin{gathered} \text { № } \\ \Pi / \Pi \end{gathered}$	№ раздела и темы	Перечень рассматриваемых вопросов для самостоятельного изучения	Кол-во часов
Раздел 1. Химико-аналитический контроль объектов агросферы			38
1.	Тема 1. Пробоотбор и пробоподготов ка	Представительная проба, способы ее получения. Транспортировка и хранение проб, способы их консервирования. Пробоподготовка. Разложение проб. Концентрирование и разделение при пробоподготовке.	4
2	Тема 2. Физикохимические методы анализа воды	Определение обобщенных физических и химических показателей, определяющих качество воды. Определение неорганических компонентов вод. Природные органические вещества вод. Общая оценка содержания органических веществ: определение органического углерода, азота, фосфора.	10
3.	Тема 3 Физикохимические методы анализа воздуха		8
4.	Тема 4. Анализ почв и донных отложений	Химический состав почв. Гумусовые вещества. Определение обобщенных показателей. Определение неорганических компонентов. Элементный и молекулярный анализ. Пробоподготовка. Анализ водной вытяжки. Определение органических компонентов в почве.	8
5.	Тема 5. Анализ продукции сельского хозяйства, продуктов питания, биологических материалов	Методы их извлечения, концентрирования, разделения. Определение компонентвв, определяющих пищевую ценность продукта. Оценка безопасности пищевых продуктов. Основные аналитические проблемы. Особенности отбора, хранения и транспортировки биомас.	8
Раздел 2. Современные физико-химические методы анализа			40

$\begin{gathered} \hline \text { № } \\ \text { п/п } \\ \hline \end{gathered}$	№ раздела и темы	Перечень рассматриваемых вопросов для самостоятельного изучения	Кол-во часов
6.	Тема 1 Методы разделения и концентрирован ия		10
7.	Тема 2 Тест - методы химического анализа	Тест-системы, тест-средства, тест-методики. Классификация тест-систем. Общие представления о методологии скрининга с помощью тест-систем. Химические основы тест-методов. Реакции и реагенты. Основные требования, предъявляемые к реакциям. Способы использования реагентов. Основные типы носителей, используемых для создания тест-систем. Общая характеристика средств для тестирования. Индикаторные бумаги. Индикаторные порошки. Индикаторные трубки. Таблетки и подобные формы. Готовые растворы в капельницах. Пассивные дозиметры. Тест-средства на основе пенополиуретанов. Общая характеристика физико-химических свойств пенополиуретанов. Особенности сорбции элементов и органических соединений на пенополиуретанах.	10
8.	Тема $\quad 3$. Химико- токсикологиче ский контроль	Предельно допустимые концентрации (ПДК). Контроль содержания органических токсикантов: капиллярная газовая хроматография, хромато-массспектрометрия, высокоэффективная жидкостная и тонкослойная хроматография, сверхкритическая флюидная хроматография. Сочетание различных видов хроматографии и развитие высокоселективной пробоподготовки для определения нормируемых экотоксикантов. Идентификация соединений. Применение различных видов хроматографии. Анализ смеси без разделения. Регистрация ИК-, ЯМР-спектров и массспектров смеси.	10
9.	Тема 4. Испытательны	Нормирование показателей состава веществ и содержания вредных примесей. Нормирование	10

$\begin{gathered} \text { № } \\ \Pi / \Pi \end{gathered}$	№ раздела и темы	Перечень рассматриваемых вопросов для самостоятельного изучения	Кол-во часов
	е центры и лаборатории	требований к точности измерений. Установление обоснованных норм погрешности. Методики количественного химического анализа. Сферы распространения государственного метрологического контроля и надзора. Аккредитация аналитических лабораторий. Система aккредитации аналитических лабораторий (центров). Система аккредитации испытательных лабораторий ГОСТ Р. Порядок проведения аккредитации. Инспекционный контроль деятельности аккредитованных лабораторий.	
ВСЕГО			78

7.5. Контрольные работы / рефераты

Пример контрольной работы:

8. Изучение метрологических характеристик методов измерений.
Практические применения положений ГОСТ Р ИСО 5725

При химической сертификации сельскохозяйственной продукции необходимо учитывать, что на качество конечной продукции влияют также средства производства и вся технологическая цепочка от выращивания продукции до ее переработки в готовый продукт, последующее хранение, транспортировка до потребителя. На всех стадиях этого процесса необходимо контролировать качество продукции (ее количественных и качественных характеристик) для определения ее пригодности определенному целевому назначению. Контроль может быть осуществлен на стадии производства (производственный контроль) или в процессе эксплуатации (эксплуатационный контроль). В каждом контроле применяют или метод анализа, или методику, или средство измерения.

Любой метод анализа, методика, средство измерения, результат анализа считаются допустимыми к использованию, если известны их метрологические характеристики, и они отвечают выполняемым задачам. Метрология - наука об измерениях, методах достижения их единства и требуемой точности. Метрологические характеристики, наиболее часто используемые при анализе сельскохозяйственной и других видов продукции приведены в стандартах, которые необходимо изучить при выполнении заданий.

Ключевые слова: измерение, испытания, метод измерений, стандартизация метода измерений, результаты измерений, результаты испытаний, точность, правильность, прецизионность, систематическая погрешность, повторяемость, воспроизводимость, случайная погрешность, эксперимент по оценке точности, альтернативный метод измерений, статистический анализ.

Задание 1. Разработка и аттестация методик выполнения измерений (методик испытаний продукции, в том числе для целей подтверждения соответствия).

При выполнении задания необходимо дать ответ на следующие вопросы:
1.1. Как осуществляется организация планирования и проведения эксперимента по оценке различных показателей точности МВИ (метрологических исследований разработанной МВИ с целью установления приписанных характеристик погрешности измерений, повторяемости, воспроизводимости).
1.2. Какие существуют способы экспериментальной оценки различных показателей точности (характеристик погрешности) МВИ.
1.2.1. Основной метод определения стандартных отклонений повторяемости и воспроизводимости результатов измерений характеристик однородных (идентичных) материалов (объектов).
Изучить ГОСТ Р ИСО 5725-1 разделы 5, 6, 7; ГОСТ Р ИСО 5725-2, разделы 5 и 6; пункты 1.4, 1.5, разделы 4, 5, 7; ГОСТ Р ИСО 5725-6, раздел 4, ГОСТ Р 8.563, пункты 5.1, 5.2; ГОСТ Р 51672 пункты 5.7, 5.9; ГОСТ Р 8.563, пункт 5.2; ГОСТ Р 1.5, пункт 7.3.8.
1.2.2. Альтернативные методы определения стандартных отклонений повторяемости и воспроизводимости результатов измерений характеристик гетерогенных материалов (неидентичных объектов).
1.2.3. Способы внутрилабораторного и межлабораторного исследования и анализа промежуточных показателей прецизионности, обусловленных изменениями условий эксперимента (факторов - время, калибровка, оператор и оборудование) в пределах лаборатории.
1.2.4. Основные способы определения систематической погрешности метода измерений (МВИ).
1.2.5. Способы определения систематической погрешности лаборатории при реализации конкретного метода измерений (конкретной МВИ).
1.3. Чем отличаются процедуры внутрилабораторного контроля показателей точности результатов выполняемых измерений: с применением контрольных карт Шухарта и методом кумулятивных сумм.

Изучить ГОСТ Р ИСО 5725-5, разделы $1,4,5,6$; ГОСТ Р ИСО 5725-3, разделы $5-9$; ГОСТ Р ИСО 5725-4, разделы 4, 6; ГОСТ Р ИСО 5725-4, раздел 5 ; ГОСТ Р ИСО 5725-6, раздел 6; пункт 6.1 (таблица 3), пункт 6.2; ГОСТ Р 8.563 , пункт 5.2 ; ГОСТ Р 1.5 , пункт 7.3 .8 ; ГОСТ Р 8.563 , раздел 5 , пункт 5.2 ; ГОСТ Р 1.5, пункт 7.3.

Задание 2. Стандартизация МВИ (метода контроля, измерений, испытаний, анализа)
2.1. Каковы общие требования к документу, регламентирующему стандартный метод измерений, испытаний, анализа (МВИ).
2.2. Как дается обоснование предложений о возможности стандартизации в качестве альтернативного метода измерений (испытаний, анализа), широко используемого на практике. Какие требования предъявляют к квазимежлабораторной программе апробации альтернативного метода измерений (испытаний, анализа), альтернативной МВИ.
2.3. Какова процедура межлабораторного оценивания и подтверждения показателей точности предлагаемого к стандартизации альтернативного метода измерений (испытаний, анализа), предназначенного для определения одного и того же показателя качества или безопасности продукции (процесса или услуги), для которого уже стандартизован иной (на сегодня основной или арбитражный) метод измерений (испытаний, анализа).
2.4. Стандартизация требований к установлению окончательного результата испытаний и разрешения спорных ситуаций - процедур выполнения арбитражных измерений (испытаний) с учетом методов проверки приемлемости результатов измерений (испытаний), полученных в условиях как повторяемости, так и воспроизводимости.

Изучить требования ГОСТ Р ИСО 5725-1 пункты 4.1, 6.2; ГОСТ Р ИСО $5725-6$, раздел 8 , пункты $8.1-8.3,8.5$; ГОСТ Р ИСО $5725-6$, раздел 5 ; ГОСТ Р ИСО $5725-1$, раздел 7 ; ГОСТ Р 1.5 , пункт 7.3 , пункт 7.3 .2 ; ГОСТ Р 8.563 , раздел 7; ГОСТ Р 51672 пункт 5.11; ГОСТ Р ИСО/МЭК 17025.

Задание 3. Оценка компетентности испытательных лабораторий

3.1. Каковы критерии оценки качества применения лабораторией методов измерений, их документирования и соблюдения стандартизованных процедур выполнения измерений (испытаний) - для лабораторий - заявителей на получение признания своей компетентности.
3.2. Оценка соответствия применения в лаборатории процедур контроля показателей точности результатов выполняемых измерений (испытаний) требованиям ГОСТ Р ИСО 5725 (для всех лабораторий).
3.3. Оценка деятельности лабораторий посредством межлабораторных сравнительных испытаний.
3.4. Как осуществляется инспекционный контроль за деятельностью аккредитованных лабораторий.

Изучить ГОСТ Р ИСО 5725-1, раздел 7; ГОСТ Р ИСО/МЭК 17025; ГОСТ Р ИСО 5725-4, раздел 5; ГОСТ Р ИСО 5725-6, раздел 7, пункты 7.1, 7.2; ГОСТ Р ИСО 5725-6, раздел 6; раздел 7, пункт 7.3; ГОСТ Р ИСО 5725-6, раздел 7, пункты 7.1, 7.2.4, 7.3.4; ГОСТ Р ИСО 5725-6, раздел 7, пункт 7.3.

Сделать выводы.

Контрольные вопросы

1. Существует ли для данного метода измерений удовлетворяющий соответствующим требованиям эталон?
2. Сколько лабораторий должно быть вовлечено в совместный эксперимент?
3. Каким образом должны отбираться лаборатории, и каким требованиям

они должны удовлетворять?
4. Каков диапазон уровней, с которыми придется столкнуться на практике?
5. Сколько уровней должно быть использовано в эксперименте?
6. Какие материалы являются подходящими для представления данных уровней и каким образом они должны быть подготовлены?
7. Какое число параллельных определений должно быть назначено?
8. Какие временные рамки должны быть установлены для завершения всех измерений?
9. Является ли исходная модель (п.5.1 ГОСТ Р ИСО 5725) подходящей, или должен быть рассмотрен видоизмененный вариант?
10. Нужны ли особые меры предосторожности для обеспечения уверенности в том, что во всех лабораториях измерениям подвергаются идентичные материалы, находящиеся в одном и том же состоянии?
11. Какие существуют виды контроля?
12. Что изучает метрология, какие метрологические характеристики приводятся в стандартах?

Темы рефератов по учебной дисциплине (модулю) «Физическо-химические методы анализа объектов агросферы»:

1. Предельно допустимые концентрации (ПДК).
2. Контроль содержания органических токсикантов физико-химическими методавми.
3. Капиллярная газовая хроматография.
4. Хромато-масс-спектрометрия.
5. Высокоэффективная жидкостная и тонкослойная хроматография.
6. Сверхкритическая флюидная хроматография.
7. Сочетание различных видов хроматографии и развитие высокоселективной пробоподготовки для определения нормируемых экотоксикантов.
8. Идентификация соединений. Применение различных видов хроматографии.
9. Анализ смеси без разделения.
10.Регистрация ИК-, ЯМР-спектров и масс-спектров смеси.
11.Сочетание различных видов хроматографии и масс-спектрометрии с ионизацией в широком диапазоне давлений в источнике ионов.

8. Форма промежуточной аттестации и фонд оценочных средств, включающий:

- Перечень компетенций выпускников образовательной программы, в формировании которых участвует дисциплина (модуль).
- Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения.

Примерный перечень вопросов к зачету по дисциплине (модулю)

 «Физическо-химические методы анализа объектов агросферы»:1. Что изучает химико-аналитический контроль объектов агросферы.
2. Каковы основные объекты анализа в агросфере.
3. Какова роль физико-химических методов анализа в решении проблем окружающей среды.
4. Как проводят пробоотбор. Представительная проба, способы ее получения. Транспортировка и хранение проб, способы их консервирования.
5. Как проводят пробоподготовку. Разложение проб. Концентрирование и разделение при пробоподготовке.
6. Как отбирают и хранят пробы воды.
7. Определение обобщенных физических и химических показателей, определяющих качество воды. Определение неорганических компонентов вод.
8. Природные органические вещества вод. Общая оценка содержания органических веществ: определение органического углерода, азота, фосфора.
9. Основные классы загрязняющих органических веществ.
10.Каковы источники поступления токсикантов, устойчивость токсикантов в окружающей среде, токсичность, методы извлечения, концентрирования, разделения и определения.
11.Как анализируют воздух городов, воздух рабочей зоны, промышленные и транспортные выбросы.
12.Каковы способы и методы отбора проб воздуха.
10. Химический состав воздуха. Определение неорганических компонентов воздуха природного и техногенного происхождения. Определение органических соединений.
14.Аэрозоли: образование в атмосфере, роль в переносе нелетучих загрязняющих веществ, особенности пробоотбора и анализа.
15.Автоматизация анализа воздуха. Основные типы газоанализаторов. Дистанционные методы анализа.
16.Каковы особенности физико-химического анализа почвы. Пробоотбор.
11. Химический состав почв. Гумусовые вещества. Определение обобщенных показателей. Определение неорганических компонентов. Элементный и молекулярный анализ.
18.Пробоподготовка почв. Анализ водной вытяжки. Методы извлечения и концентрирования загрязняющих органических веществ.
19.Определение органических компонентов в почве.
20.Определение токсичных веществ.
21.Основные аналитические проблемы при анализе биологических объектов. Химические вещества пищи. Методы их извлечения, концентрирования, разделения.
22.Определение компонентов, определяющих пищевую ценность продукта.
23.Оценка безопасности пищевых продуктов.
24.Особенности отбора, хранения и транспортировки биомасс.
25.Маскирование, разделение и концентрирование. Классификация методов разделения и концентрирования. Количественные характеристики этих методов.
26.Принципы сочетания пробоподготовки и методов определения веществ.
27.Проточные и автоматизированные методы анализа, включающие концентрирование.
28.Методы концентрирования, применяемые в комбинированных и гибридных методах определения органических и неорганических веществ.
29.Экстракция. Осаждение и соосаждение. Сорбция.
30.Современные способы проведения концентрирования, приборы и устройства.
31.Особенности сочетания концентрирования с методами определения элементов: спектрофотометрией, атомной-абсорбцией, атомноэмиссионным методом с индуктивно связанной плазмой, рентгенофлуоресцентным, инверсионной вольтамперометрией и др., а также с газовой и жидкостной хроматографией при определении органических соединений.
32.Выбор метода концентрирования. Оптимизация условий определения веществ.
33.Примеры сорбционно-спектроскопических и сорбционнохроматографических методов определения веществ, в том числе проточных и автоматизированных.
34.Общая характеристика тест-методов и область применения.
35.Тест-системы, тест-средства, тест-методики.
36.Химические основы тест-методов. Реакции и реагенты. Основные требования, предъявляемые к реакциям. Способы использования реагентов.
37.Основные типы носителей, используемых для создания тест-систем. Общая характеристика средств для тестирования. Индикаторные бумаги. Индикаторные порошки. Индикаторные трубки. Таблетки и подобные формы.
38.Тест-средства на основе пенополиуретанов. Общая характеристика физико-химических свойств пенополиуретанов. Особенности сорбции элементов и органических соединений на пенополиуретанах. Области применения пенополиуретанов в химическом анализе.
39.Примеры определения неорганических и органических соединений с помощью тест-средств на основе пенополиуретанов.
40.Определение неорганических и органических соединений в различных объектах агросферы.
41.Эколого-аналитический контроль токсичных органических соединений.
42.Источники поступления экотоксикантов в окружающую среду. Основные требования к эколого-аналитическому контролю.
43.Предельно допустимые концентрации (ПДК).
44.Контроль содержания органических токсикантов: капиллярная газовая хроматография, хромато-масс-спектрометрия, высокоэффективная жидкостная и тонкослойная хроматография, сверхкритическая флюидная хроматография.
45.Сочетание различных видов хроматографии и развитие высокоселективной пробоподготовки для определения нормируемых экотоксикантов. Идентификация соединений.
46.Применение различных видов хроматографии. Анализ смеси без разделения.
47.Регистрация ИК-, ЯМР-спектров и масс-спектров смеси. Установление вероятной структуры на основании масс-спектров, ИК-спектров и данных реакционной хроматографии.
12. Цели, задачи, область деятельности аналитической лаборатории.
49.Виды исследования веществ, материалов и их характеристики. Анализ продукции.
50.Понятие сертификации продукции.
51.Анализ объектов, связанных с обеспечением жизнедеятельности человека, и объектов окружающей среды.
13. Нормирование показателей состава веществ и содержания вредных примесей. Нормирование требований к точности измерений. Установление обоснованных норм погрешности.
53.Методики количественного химического анализа.
54.Аккредитация аналитических лабораторий. Система аккредитации аналитических лабораторий (центров).
55.Порядок проведения аккредитации.
56.Инспекционный контроль деятельности аккредитованных лабораторий.
57.Показатели качества методик анализа. Формы представления. Способы выражения. Оценка пригодности методик анализа.
58.Контроль качества результатов анализа. Внутрилабораторный оперативный контроль процедуры анализа. Стандартные образцы в системе обеспечения качества работы лаборатории. Применимость стандартных образцов в лабораторной практике.

- Методические материалы, определяющие процедуру оценивания результатов обучения.

Формы промежуточной аттестации по дисциплине (модулю): зачет.

9. Ресурсное обеспечение:

9.1 Перечень основной литературы

1. Анександрова Э.А.,Гайдукова Н.Г. Аналитическая химия в 2 книгах. Книга 2. Физико-химические методы анализа. 2-е изд. Испр. и доп. М.: Изд-во Юрайт. 2014. 335 с.
2. Сычев С.Н., Гаврилина В.А. Высокоэффективная жидкостная хроматография: аналитика, физическая химия, распознавание многокомпонентных систем. С-Петерб.: Изв-во Лань, 2013. 256 с.
3. Спектральные методы анализа. Практическое руководство. Под ред. В.Ф. Селеменева и В.Н. Семенова, С-Петерб.: Изв-во Лань . 2014. 416 с.
4. Лебухов В.И., Окара А.И., Павлюченкова Л.П. Физико-химические методы исследования. С-Петерб.: Изв-во Лань. 2012. 480 с.
5. Ганеев А.А., Шолупов С.Е., Пупышев А.А. и др. Атомноадсорбционный анализ, С.-Петерб., Изд-во Лань, 2011, 304 с.
6. Конюхов В.В. Хроматография. С.-Петерб., Изд-во Лань, 2012. 224 с.
7. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. С.-Петерб., Изд-во Лань, 2015. 672 с.

9.2 Перечень дополнительной литературы

1. Белопухов С.Л., Шнее Т.В., Старых С.Э. и др. Лабораторный практикум по физической и коллоидной химии. М.: Изд-во МСХА имени К.А. Тимирязева, 2012, 300 с.
2. Глазко В.И., Белопухов С.Л., Сторчевой В.Ф. Нанотехнологии и материалы в сельском хозяйстве. М.: Изд-во ФГБОУ ВО РГАУ-МСХА имени К.А.Тимирязева, 2015.- 257 с.
3. Белопухов С.Л., Дмитревская И.И., Антошин В.А. и др. Методы анализа серы при контроле качества продукции растениеводства. М.: Изд-во РГАУ-МСХА имени К.А. Тимирязева, 2015.- 189 с.

9.3 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- Scifinder - поиск методик синтеза, литературный и патентный поиск по химии,
- SPRESIweb - литературный и патентный поиск, поиск по части молекулы и т.п.
- eMolecules - поиск соединений в комбинаторных базах данных,
- ChemExper - поиск соединений в различных базах данных,
- SyntheticPages - Интерактивная база данных химических методик,
- ISI's Reaction Citation Index (RCI) - база данных по химическим реакциям,
- Elibrary.ru - доступ к аннотациям статей в 30 тыс. журналах, полнотекстовый поиск,
- Six NMR spectral and physical property databases from Advanced Chemistry Development (ACD) - данные по физико-химическим свойствам соединений,
- Cambridge Crystallographic Data Centre - поисковая система по свойствам веществ в базе Cambridge Structural Database,
- ChemSource - Интернет - ресурс по разделам химии,
- NIST Chemistry WebBook - данные по термохимическим свойствам, энтальпии образования, энтропии более 15000 химических соединений
- The WWW chemical structures database - содержит более чем 2250 структур, ссылки на оригинальные страницы Сети. Структурный и субструктурный поиск, поиск по формуле, по названию и др.
- БАЗА ДАННЫХ "ХИМИЯ" Всероссийского института научной и технической информации (ВИНИТИ) - Доступны следующие базы данных, содержащие информацию в области химии: Химия, Физикохимическая биология, Коррозия и защита от коррозии, Металлургия, Охрана окружающей среды, Обзоры.
- MDL Information Systems - информационно-поисковая система для ученых в области естественных наук и химии,
- MDL Drug Data Report (MDDR) - база данных, содержащая более 100,000 соединений (MDL Information System Inc.)
- AntiBase 2.0 - база данных по более чем 20000 природных веществ.

9.4 Перечень информационных технологий, используемых при осуществлении образовательного процесса, включая программное обеспечение, информационные справочные системы:

1. Программа ChemLab. - для проведения виртуальных химических экспериментов.
2. Программа MathLab - для моделирования влияния условий химических реакций, катализаторов и ингибиторов на выход продуктов при проведении экспериментов.
3. Программа Statistica - для анализа экспериментальных данных, визулизации полученных результатов, статистическая обработка результатов.

9.5 Описание материально-технической базы.

Для реализации программы подготовки по дисциплине (модулю) «Физико-химические методы анализа объектов агросферы» перечень матери-ально-технического обеспечения включает:

1. Специализированные аудитории для проведения лекций с мультимедийным оборудованием и выходом в Интернет.
2. Специализированные химические лаборатории для проведения физико-химических исследований
3. Специализированные аудитории с компьютерами, специальное программное обеспечение для постановки экспериментов, обсчета полученных результатов.

Кафедра располагает закрепленными за ней учебными аудиториями, специализированными химическими лабораториями, физико-химическим оборудованием, другими приборами и инструментами в соответствии с перечнем оборудования.

9.5.1 Требования к аудиториям (помещениям, местам) для проведения занятий.

Для проведения теоретических занятий по дисциплине «Физическая химия» необходимы:

специальные помещения, лаборатории для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания оборудования.

Специализированная химическая лаборатория должна быть оборудована столами для проведения химических опытов, вытяжкой с приточной и вытяжной вентиляцией.

Помещения для самостоятельной работы обучающихся должны быть оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационнообразовательную среду организации.

9.5.2 Требования к специализированному оборудованию

Проведение занятий осуществляется в аудиториях, оборудованных приборами для проведения физико-химических исследований.

В лаборатории необходимо иметь: дистилляторы (типа АДЭа-10, АДЭа25), кондуктометры (типа АКП-02, АНИОН- 4120, АНИОН-4150, МАРК-603, HANNA), иономеры (типа $\mathrm{pH}-011 \mathrm{M} П, \mathrm{pX}-150$, АНИОН-4101), вискозиметры (типа ВПЖ-1, ВПЖ-2), приборы для измерения поверхностного натяжения (Тензиометр типа К6, К9), калориметры (типа С-2000), поляриметры (типа СМ-3, П-161М), рефрактометры (типа ИРФ-464, ИРФ-470, АЛР-3), приборы для проведения электрофореза (типа КАПЕЛЬ-103М), потенциометры (типа ИПЛ-101, ИПЛ-111), аналитические весы (типа ВЛ-210, ВЛ-210), технические весы (ВМ-510), термостаты (жидкостные серии Т-2, Т-3), термометры (ртутные, цифровые типа ТЦ-1200), спектрофотометры (типа КФК-3, ЭКСПЕРТ-003), пламенные фотометры (серия ФПА-378, ФПА-354, ФПА-22), оптические микроскопы (типа Микмед-6, ПОЛАМ РП-1), газовые и жидкостные хроматографы, комплекс для термохимических исследований, соответствующую химическую посуду и химические реактивы.

10. Методические рекомендации аспирантам по освоению дисциплины (модуля)

При изучении дисциплины аспиранту необходимо посещать лекции, семинарские занятия, пройти тестирование по соответствующим разделам. При самостоятельной работе и подготовке к лекциям и занятиям необходимо обращать особое внимание на основные понятия, законы, формулы данного раздела, размерности всех величин в системе СИ, понимать значение для применения определяемых величин при изучении и описании объектов агросферы, а также тех объектов, которые изучает аспирант при выполнении диссертации.

11. Методические рекомендации преподавателям по организации обучения по дисциплине (модулю)

Проведение лекций и семинарских занятий в интерактивной форме, анализ конкретных ситуаций и принятие решений на основе результатов по физико-химическим характеристикам биологических объектов.

Оргдеятельностные игры с целью выработки инновационного решения проблемы (задачи) в рамках одного из разделов дисциплины, например, при разборе темы по коррозионно-электрохимическим процессам, протекающим при хранении и переработке продукции сельскохозяйственного производства. Полученное решение должно быть оптимальным и реализуемым. Необходимо использовать методы групповой работы для получения нестандартных, оперативных, новых решений. На основе выработанного решения составляются проект и программа исследования и его внедрения.

Проектные методы при изучении разделов по термодинамике, кинетике и химического равновесия, электрохимическим процессам с использованием математических программ SIMULINK пакета MathLab.

Использование деятельностного подхода.
Продуктивное обучение.
Использование метода Кейс-стади на семинарских занятиях по изучаемым разделам, в частности, при изучении разделов по коллоиднохимическим свойствам почв и высокомолекулярным соединениям.

Автор рабочей программы:

Профессор, к.х.н., д.с.-х.н. профессор Белопухов С. Л.

РЕЦЕНЗИЯ

на рабочую программу по дисциплине (модулю)

 «Физико-химические методы анализа объектов агросферы»ОПОП ВО по направлению подготовки 35.06 .01 Сельское хозяйство, по программе аспирантуры 06.01.02 Мелиорация, рекультивация и охрана земель 06.01.04 Агрохимия
(уровень подготовки кадров высшей квалификации)
Мною, Ивлевым Александром Андреевичем, кандидатом химических наук, доктором биологических наук, профессором кафедры неорганической и аналитической химии ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева (далее по тексту рецензент), проведена рецензия рабочей программы по дисциплине (модулю) «Физико-химические методы анализа объектов агросферы» ОПОП ВО (уровень подготовки кадров высшей квалификации) по направлению подготовки 35.06 .01 Сельское хозяйство, по программе аспирантуры 06.01.02 Мелиорация, рекультивация и охрана земель, 06.01.04 Агрохимия, разработанной в ФГБОУ ВО РГАУ_ МСХА имени К.А. Тимирязева, на кафедре физической и органической химии (разработчик - профессор Белопухов С.Л.).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

1. Предъявленная рабочая программа учебной дисциплины (модуля) «Физикохимические методы анализа объектов агросферы» (далее по тексту Программа) соответствует требованиям ФГОС ВО (уровень подготовки кадров высшей квалификации) по направлению подготовки 35.06 .01 Сельское хозяйство, утвержденного приказом Министерства образования и науки Российской Федерации от 30.07.2014г. № 869 и зарегистрированного в Минюсте России 20.08.2014г. №33718.
2. Рабочая программа содержит все основные разделы, соответствует требованиям к нормативно-методическим документам, предъявляемым к рабочей программе дисциплины в соответствии с Письмом Рособрнадзора от 17.04.2006 № 02-5577ин/ак.
3. Представленная в Рабочей программе актуальность учебной дисциплины (модуля) в рамках реализации ОПОП ВО (уровень подготовки кадров высшей квалификации) не подлежит сомнению - дисциплина относится к базовой части учебного цикла Блок 1 «Дисциплины (модули)»
4. Представленные в Рабочей программе цели учебной дисциплины соответствуют требованиям ФГОС ВО (уровень подготовки кадров высшей квалификации) направления подготовки 35.06 .01 Сельское хозяйство с учётом профессиональных стандартов: «Преподаватель», «Научный работник», рекомендуемых для всех направлений подготовки.
5. В соответствии с Рабочей программой за дисциплиной (модулем) «Физикохимические методы анализа объектов агросферы» закреплены одна универсальная и одна общепрофессиональная компетенции, которые реализуются в объявленных требованиях.
6. Результаты обучения, представленные в Рабочей программе в категориях знать, уметь, владеть соответствуют специфике и содержанию дисциплины и демонстрируют возможность получения заявленных результатов.
7. Содержание учебной дисциплины, представленной Рабочей программы, соответствует рекомендациям примерной рабочей программы дисциплины, рекомендуемой при реализации ФГОС ВО по направлениям подготовки в аспирантуре.
8. Общая трудоёмкость дисциплины (модуля) «Физико-химические методы анализа объектов агросферы» составляет 3 зачётных единицы (108 часов), что соответствует ФГОС ВО (уровень подготовки кадров высшей квалификации) для направления подготовки 35.06 .01 Сельское хозяйство.
9. Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин соответствует действительности. Учебная

дисциплина (модуль) «Физико-химические методы анализа объектов агросферы» взаимосвязана с другими дисциплинами ОПОП ВО (уровень подготовки кадров высшей квалификации) и Учебного плана подготовки аспирантов по направлению подготовки 35.06.01 Сельское хозяйство и возможность дублирования в содержании отсутствует.
10. Представленная Рабочая программа предполагает использование современных образовательных технологий, используемых при реализации различных видов учебной работы. Формы образовательных технологий соответствуют специфике дисциплины.
11. Виды, содержание и трудоёмкость самостоятельной работы аспирантов, представленные в Рабочей программе, соответствуют требованиям к подготовке выпускников, содержащимся во ФГОС ВО (уровень подготовки кадров высшей квалификации) направления подготовки 35.06 .01 Сельское хозяйство.
12. Представленные и описанные в Рабочей программе формы текущей оценки знаний соответствуют специфике дисциплины и требованиям к выпускникам.

Форма промежуточного контроля знаний аспирантов, предусмотренная Рабочей программой, осуществляется в форме зачета, что соответствует примерной рабочей программе дисциплины, рекомендуемой для всех направлений подготовки, а также статусу дисциплины, как дисциплины базовой части учебного цикла Блока 1 «Дисциплины (модули)» ФГОС ВО (уровень подготовки кадров высшей квалификации) направления подготовки 35.06.01 Сельское хозяйство.
13. Формы оценки знаний, представленные в Рабочей программе, соответствуют специфике дисциплины и требованиям к выпускникам.
14. Учебно-методическое обеспечение дисциплины представлено: основной литературой - 7 источников, дополнительной литературой -3 наименования, Интернетресурсы - 16 источников и соответствует требованиям ФГОС ВО (уровень подготовки кадров высшей квалификации) направления подготовки 35.06 .01 Сельское хозяйство.
15. Материально-техническое обеспечение соответствует специфике дисциплины «Физико-химические методы анализа объектов агросферы» и обеспечивает использование современных образовательных, в том числе интерактивных методов обучения.
16. Методические рекомендации аспирантам и методические рекомендации преподавателям дают представление о специфике обучения по дисциплине (модулю) «Физико-химические методы анализа объектов агросферы» и соответствуют требованиям Письма Рособрнадзора от 17.04.2006 N 02-55-77ин/ак.

ОБЩИЕ ВЫВОДЫ

На основании проведенной рецензии можно сделать заключение, что характер, структура и содержание рабочей программы дисциплины (модуля) «Физико-химические методы анализа объектов агросферы» ОПОП ВО (уровень подготовки кадров высшей квалификации) по направлению 35.06 .01 Сельское хозяйство, по программе аспирантуры 06.01.02 Мелиорация, рекультивация и охрана земель, 06.01.04 Агрохимия, разработанная профессором Белопуховым С.Л., соответствует требованиям ФГОС ВО (уровень подготовки кадров высшей квалификации), современным требованиям экономики, рынка труда, профессиональных стандартов «Преподаватель» и «Научный работник», позволит при её реализации успешно обеспечить формирование заявленных компетенций.

Рецензент: Ивлев А.А., к.х.н., д.б.н., профессор кафедры неорганической и аналитической химии ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева

[^0]: ${ }^{1}$ Оставить только те виды учебной работы, которые включены в СРА по дисциплине

