Вариант № 0000

по направлению подготовки 13.04.02 «Электроэнергетика и электротехника»

Инструкция для абитуриентов

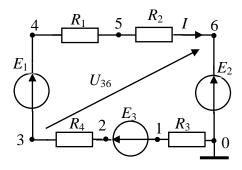
Для выполнения экзаменационной работы отводится **2 часа (120 минут)**. Работа состоит из 2 частей, включающих 40 заданий. Если задание не удается выполнить сразу, перейдите к следующему. Если останется время, вернитесь к пропущенным заданиям.

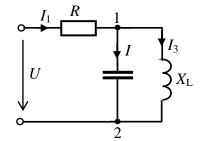
Желаем успеха! Часть А

K каждому заданию части A даны несколько ответов, из которых только один правильный. Выберите верный, по Вашему мнению, ответ. В бланке ответов <u>под номером задания</u> поставьте <u>крестик</u> (X) в клеточке, номер которой соответствует <u>номеру</u> выбранного Вами ответа.

- А1. Полная мощность электрической цепи переменного тока измеряется в
 - 1) BT;
 - 2) BAp;
 - 3) B;
 - 4) B A.
- А2. Выходным параметром тензодатчика является:
 - 1) Деформация
 - 2) Усилие
 - 3) Сопротивление
 - 4) Температура
- А3. Недостатки разомкнутых систем:
 - 1) Высокая стоимость
 - 2) Накопление ошибки управления
 - 3) Низкое быстродействие
 - 4) Сопутствуют образованию колебательного процесса
- А4. Для механических характеристик АД в генераторном и двигательном режимах для критических моментов справедливо соотношение:

1)
$$|M_{K\!\!\!/\!\!\!/B}| < |M_{K\!\!\!/\!\!\!/}|$$
.

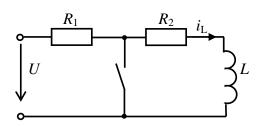

$$2) \left| \boldsymbol{M}_{\boldsymbol{K}\!\boldsymbol{\mathcal{I}}\boldsymbol{\mathcal{B}}} \right| = \left| \boldsymbol{M}_{\boldsymbol{K}\!\boldsymbol{\mathcal{T}}} \right|.$$


3)
$$|M_{KJB}| > |M_{KT}|$$
.

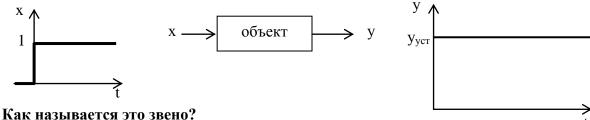
4)
$$|\boldsymbol{M}_{KJB}| = |\boldsymbol{M}_{KT}| = 0.$$

- А5. Укажите типы тепловых электростанций
 - 1)ΓЭС, ГАЭС, ГРЭС
 - 2)ΓΡЭC, ΤЭC, ΚЭC
 - 3)КЭС, ГЭС ТЭЦ
 - 4)ТЭЦ, ГАЭС, ГЭС

- Аб. При каких условиях следует применять проходные изоляторы «шинного» типа.
 - 1) Напряжение более 20 кВ.
 - 2) Ток более 2000А.
 - 3) Напряжение до 110 кВ.
 - 4) Ток менее 1000А
- A7. Определите ток в цепи, при заданных ЭДС: $E_1 = 24$ В, $E_2 = 32$ В, $E_3 = 40$ В и сопротивлениях $R_1 = R_3 = 1$ Ом, $R_2 = R_4 = 3$ Ом.
 - 1) 6,0
 - 2) 4,0
 - 3) 8,0
 - 4) 8,0
- A8. Определите полное сопротивление цепи, при R =20 Ом; X_C = 20 Ом; X_L = 10 Ом U =100 В.
 - 1) $20\sqrt{2}$
 - 2) 50
 - 3) 30
 - 4) 40

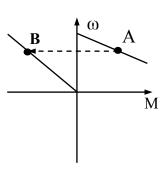



- А9. Определите величину активной мощности электроприемника, если при мгновенном значении напряжения $u = 141 \sin \omega t$ он потребляет ток равный $i = 7.07 \sin (\omega t + 45)$
 - 1) 500
 - 2) 352,5
 - 3) 996,9
 - 4) 352,5
- A10. Определите комплексный линейный ток \underline{I}_{C} трехфазного источника при токе нагрузки $\underline{I}_{ab} = j10$, соединенной треугольником:
 - 1) $I_{\rm C} = 10.0 \ {\rm e}^{-{\rm j}180^{\circ}};$
 - 2) $\underline{I}_{\rm C} = 17.3 \, {\rm e}^{-{\rm j}150^{\circ}};$
 - 3) $\underline{I}_{C} = 17.3 \text{ e}^{-\text{j}180^{\circ}};$
 - 4) $I_{\rm C} = 17.3 \, {\rm e}^{-{\rm j}150^{\circ}}$;
- А11. Определите значение тока $i_L(0)$ в момент коммутации для заданной схемы цепи при постоянном входном напряжении U=10 В и значениях параметров $R_1=10$ Ом,


- 1) $i_L(0) = 0$
- 2) $i_L(0) = -0.5 \text{ A}$
- 3) $i_L(0) = 1 \text{ A}$
- 4) $i_L(0) = 0.5 \text{ A}$

- A12. Передаточная функция звена чистого запаздывания имеет вид:
 - 1) W(p) = k
 - 2) $W(p) = ke^{-\tau p}$
 - $W(p) = \frac{k}{Tp+1}$
 - $W(p) = \frac{k}{Tn}$
- A13. Данная схема (ОУ – объект управления, Р – регулятор) реализует принцип управления

- 1) По возмущению
- 2) По отклонению
- 3) Разомкнутый принцип
- 4) Комбинированный
- A14. При построении АЧХ по известной АФХ используется формула или формулы (Обозначены: А – амплитуда, ф - фаза, Re, Im – действительная и мнимая части **АФХ)**:
 - 1) $A = \sqrt{Re^2 + Im^2}$
 - 2) $A = \text{Re} \cdot \cos \varphi$
 - 3) $A = arctg \frac{Im}{D_0}$
 - 4) $A = Re \cdot cos \varphi + Im \cdot sin \varphi$
- A15. Для одного звена САУ даны графики зависимости входной величины x(t) и выходной величины y(t) от времени:

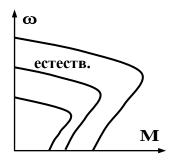

- 1) Реальное дифференцирующее
- 2) Реальное интегрирующее
- 3) Усилительное
- 4) Звено чистого запаздывания
- A16. Какому типовому звену соответствует следующее дифференциальное уравнение?

$$T_2^2 \frac{d^2 y}{dt^2} + T_1 \frac{dy}{dt} + y = K \cdot x, \quad T_1 < 2 \cdot T_2$$

- 1) Усилительному
- 2) Апериодическому второго порядка
- 3) Колебательному
- 4) Интегрирующему

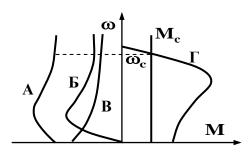
А17. Для перехода ДПТ независимого возбуждения из точки А в точку В необходимо:

- 1) Отключить обмотку якоря от сети и замкнуть её на дополнительное сопротивление, подключив обмотку возбуждения к якорю.
- 2) Вращать якорь с помощью стороннего двигателя с угловой скоростью $\omega > \omega_0$.
- 3) Включить дополнительное сопротивление в цепь якоря, не отключая его от сети.
- 4) Отключить обмотку якоря от сети и замкнуть её на дополнительное сопротивление, оставив обмотку возбуждения под напряжением.


А18. Механические характеристики АД при частотном регулировании скорости соответствуют закону изменения напряжения:

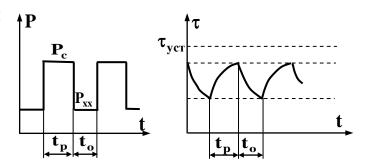
1)
$$\frac{U}{f^2} = Const$$
.

2)
$$\frac{U}{f} = Const$$
.


3)
$$\frac{U}{\sqrt{f}} = Const$$
.

4)
$$f = Uaria$$
, $U = Const$.

А19. При переключении АД со схемы «треугольник» Δ на схему «двойная звезда» YY регулирование скорости производится при:


- 1) Постоянной допустимой мощности ($P_{\partial on} = Const$).
- 2) Постоянном допустимом моменте ($M_{\partial on} = Const$).
- 3) Допустимом моменте, прямо пропорциональном скорости ($M_{\partial on} \equiv \omega$).
- 4) Допустимой мощности, обратно пропорциональной скорости ($P_{\partial on} \equiv \frac{I}{\omega}$)
- А20. Меньшее время торможения асинхронного электродвигателя от $\omega = \omega_c$ до $\omega = 0$ соответствует характеристике

- 1) Б.
- 2) A.
- 3) B.
- 4) Γ.

А21. Какому режиму работы соответствует график нагрузки?

- 1) Продолжительному.
- 2) Перемежающемуся.
- 3) Кратковременному.
- 4) Повторно-кратковременному.

А22. Какими показателями характеризуется техническая эффективность средств грозозащиты.

- 1) Количество ударов молнии.
- 2) Количество грозовых дней в году.
- 3) Уровень грозоупорности и число грозовых отключений линии в год.
- 4) Количество перекрытий и вероятность перехода в силовую дугу.

А23. К особенностям дифференцированной защиты трансформаторов относится:

- 1). Бросок тока намагничивания при наличии РПН
- 2).Появление дополнительных составляющих тока небаланса
- 3). Неполное выравнивание токов в плечах защиты
- 4). Неодинаковые схемы соединения обмоток высшего и низшего напряжения силового трансформатора

А24. Какие единицы измерений частоты аварийных отключений (ω)в течении года

- 1)ч/откл
- 2) откл/год
- 3)откл/ч
- 4)год/откл

A25. Какие единицы измерений продолжительности внезапного отключения (τ) потребителя

- 1) ч/откл
- 2) откл/год
- 3) откл/ч
- 4) год/откл

A26. Потеря напряжения в силовом трансформаторе при его коэффициенте загрузки равном 1 составляет:

- 1)3%
- 2)6%
- 3)4-5%
- 4)10%

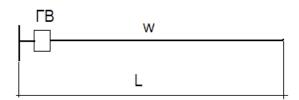
А27. Конструкционная надбавка по напряжению у силового трансформатора равна

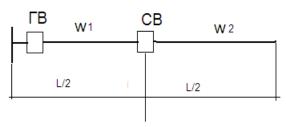
1)+5%

2)0%	
3)+10%	
4)+7,5%	
Неизолированные однопроволочные провода для ВЛ изготавливают из материала:	
1)Алюминий	
2)Медь	
3)Сталь	
4)Сталеалюминиевые	
Устройства обнаружения режима однофазного замыкания на землю в ВЛ 10 кВ	•
1)Волна	
2)ЦУДИЗ	
3)УПУ	
4)УКЗ	

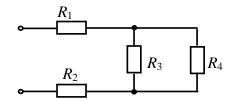
- А30. Ток срабатывания отсечки силового трансформатора определяют по выражению:
 - 1) $I_{\text{c.o.}} \geq K_{\text{H}}$.

A28.

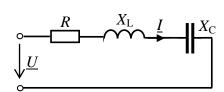

A29.

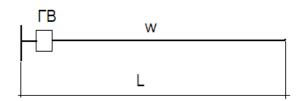

- 2) $I_{\text{c.o.}} \geq K_{\text{H}} \cdot I_{\text{pa6. max}}$
- 3) $I_{\text{c.o.}} \ge K_{\text{H}} \cdot I_{\text{H}\delta}$
- 4) $I_{\text{c.o.}} \geq K_{\text{H}}$.

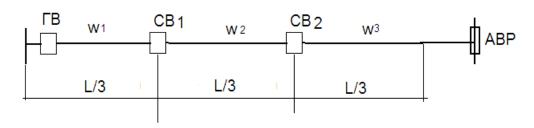
Часть В


Ответом к заданиям B1-B10 является число. Ответы запишите на бланке ответов рядом с номером задания, начиная с первой клеточки. Каждую цифру запишите в отдельной клеточке в соответствии с образцом, представленным в верхней части бланка ответов без пропусков и знаков препинания. Единицы измерения физических величин писать не нужно. При выполнении заданий разрешается пользоваться калькулятором..

В1. На ВЛ-10 кВ нагрузка равномерно распределена вдоль линии, ВЛ выполнена одной маркой провода, ω =4- распределена равномерно вдоль линии. Какое значение будет иметь ω_1 относительно ω .




- В2. Найдите величину коэффициента ошибки по скорости для замкнутой системы автоматического управления, передаточная функция которой имеет вид: $W(p) = \frac{10p}{3p+1}$
- В3. Найдите вероятность безотказной работы автоматического регулятора, эксплуатируемого в стационарных производственных условиях в течение 1000 час., если интенсивность отказов для этого регулятора составляет 10·10⁻⁶ 1/ч.
- В4. Для ДПТ независимого возбуждения (П52 $P_{\rm H}=14$ кВт, $I_{\rm H}=74$ A, $U_{\rm H}=220$ B, $n_{\rm H}=3000$ об/мин) определить скорость идеального холостого хода.
- В5. Определить скорость АД с фазным ротором при работе на реостатной характеристике, если $R_{2\mathrm{x}}=0.5$ Ом и $M=M_{\mathrm{H}}$ (4AK200M4 $P_{\mathrm{H}}=22$ кВт; $I_{1\mathrm{H}}=42.7$ A; $n_{\mathrm{H}}=1460$ об/мин; $I_{2\mathrm{H}}=45$ A; $E_{2\mathrm{K}}=340$ B).
- B6. Определите входное сопротивление цепи при $R_1 = R_2 = R_3 = R_4 = 10$ Ом:



В7. Определите значение угла ϕ в заданной электрической цепи с соотношением реактивных сопротивлений $R_4 = 10$ Ом; $X_L = 20$ Ом; $X_C = 10$ Ом

В8. На ВЛ 10 кВ ω =9 равномерно распределено вдоль линии, ВЛ выполнена одной маркой провода, электрическая нагрузка равномерно распределена вдоль линии. Определить значение ω_3 относительно ω .

- В9. Определить ток молнии при котором произойдет плавление алюминиевого проводника сечением 5 мм 2 при длине волны τ_B = 0,25 мк.сек, коэффициент для алюминия K=200.
- В10. Рассчитать потери электроэнергии в силовом трансформаторе 10/0,4 кВ

 S_{hom} =400 kBA, u_{κ} %=4,5%, P_{κ} =1,05, P_{κ} =5,5 kBt.

Передаваемая через трансформатор мощность – 380 кВА